DOI: 10.1002/ejoc.200801165

Tris[oligo(1,4-phenylenevinylene)]methylium Dyes

Soungkyoo Kim, [a] Helga Kalbitz, [a] Sabine Hillmann, [a] and Herbert Meier*[a]

Keywords: Conjugation / Carbocations / Dyes/pigments / Oligomers / Protonation / Push-pull effects

The tris[oligo(1,4-phenylenevinylene)]carbinols $2\mathbf{a}$ - \mathbf{f} (n=1-4) and the tris(4-styrylphenyl)methanes $7\mathbf{a}$, \mathbf{b} have been prepared by Wittig–Horner ($\mathbf{3}+4\mathbf{a}$ - $\mathbf{f}\to 2\mathbf{a}$ - \mathbf{f}) and Siegrist reactions ($\mathbf{5}+6\mathbf{a}$, $\mathbf{b}\to 7\mathbf{a}$, \mathbf{b}). The Wittig–Horner reactions in these examples are accompanied by an autoxidation, whereas a reduction occurs in the Siegrist reactions. Compound $2\mathbf{a}$, the lowest member (n=1) of the series $2\mathbf{a}$ - \mathbf{d} with terminal dialkylamino groups, generates first, on treatment with acids, the methylium dye $2'\mathbf{a}$, which absorbs far into the NIR region ($\lambda_{\max} = 1100$ nm). The higher members $2\mathbf{b}$, \mathbf{c} (n=2,3) of the carbinol series yield by acidic treatment only N-protonated methylium dyes $2'''\mathbf{b}$, \mathbf{c} . The different behavior is

due to a decreasing donor–acceptor interaction with increasing D–A distance. The N-protonated methylium salts 2'''a–c show long-wavelength absorptions in the region of the Vis/NIR border. Their values apporach, for increasing numbers n of repeat units, $\lambda_{\infty}=877$ nm. The structures and possible push–pull effects of the salts 2'a and 2'''a–c were studied by NMR and UV/Vis/NIR spectroscopy and compared with the selected model compounds 2e and 7a. The results shed new light on previously published triphenylmethane dyes with extended conjugation.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

Introduction

Triphenylmethane dyes 1' are a well-known class of compounds with numerous industrial applications. In recent years the strong demand for near-infrared (NIR) absorbing dyes and functional dyes for laser techniques and optoelectronics has provoked a variety of new efforts in this area. [1-4] We report herein on star-shaped systems 2' in which the three aryl groups of 1' are replaced by three oligo(1,4-phenylenevinylene) [OPV] chains (Figure 1). Carbinols serve as precursors in both cases.

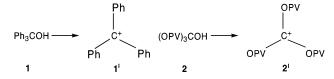


Figure 1. Triphenylmethylium ions $\mathbf{1}'$ and tris[oligo(1,4-phenylenevinylene)]methylium ions $\mathbf{2}'$ and their precursor carbinols $\mathbf{1}$ and $\mathbf{2}$.

The idea to extend the conjugation of $\mathbf{1}'$ by the introduction of *trans*-stilbene units is old, ^[5,6] and several tris(stilbenyl)methylium salts have been reported. ^[5–12] To shift the absorption far into the NIR region, the OPV chains should bear dialkylamino groups as electron-donor groups in the terminal positions. We have used bis(2-hexyloctyl)amino groups, which guarantee a good solubility even when the OPV arms are longer (n = 1-4). According to the de facto

 C_{3h} symmetry of such methylium ions, these disc-like systems do not have dipole moments, but they represent extended octupoles, which promise high first-order hyperpolarizabilities β (second-harmonic generation SHG) and large cross-sections for two-photon absorption (TPA).

Results and Discussion

Synthesis

The preparation of the target carbinols $2\mathbf{a}$ – \mathbf{d} (n=1–4) (Scheme 1) was based on three-fold Wittig-Horner reactions between the triphosphonate 3 and the OPV aldehydes $4\mathbf{a}$ – \mathbf{d} . Carbinol $2\mathbf{a}$ (n=1) was obtained in a yield of 68%, which corresponds to an average of 88% for each of the three olefination steps. The yields decrease with increasing numbers n of repeat units to 48% for $2\mathbf{b}$ (n=2), 45% for $2\mathbf{c}$ (n=3), and 8% for $2\mathbf{d}$ (n=4). In the presence of air, no special oxidant was necessary for the formation of the carbinols 2. Owing to the low yield of compound $2\mathbf{d}$ (n=4), we characterized its structure by $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectroscopy and its molecular mass and then excluded it from further studies.

For comparison with 2a-d, which contain terminal dialkylamino groups, we synthesized the carbinols 2e,f (Scheme 1) and the tris(stilbenyl)methanes 7a,b (Scheme 2), all of which contain terminal alkoxy groups. Facile protonations of 2a-d can occur on the central OH group and on the terminal amino groups, 2e,f can be protonated on the central OH group, whereas 7a,b have none of these options. The basicity of the ether groups in 2e,f and 7a,b is low. The

E-mail: hmeier@mail.uni-mainz.de

[[]a] Institute of Organic Chemistry, University of Mainz, Duesbergweg 10–14, 55099 Mainz, Germany Fax: +49-6131-39225396

Scheme 1. Preparation of the carbinols 2a-f by three-fold Wittig-Horner reactions.

solubility of **2e** and **7a**, which bear hexyloxy groups, proved to be sufficient, so we finally selected these two compounds as model compounds for treatment with acids.

Scheme 2. Preparation of the tris(stilbenyl)methanes 7a,b by three-fold Siegrist reactions.

The Siegrist reaction of ether 5 and Schiff base 6a or 6b yielded in a strongly alkaline medium the compounds 7a, b (Scheme 2). Whereas the methine center is oxidized in the process $3\rightarrow 2$, the ether function of 5 is cleaved and reduced in the process $5\rightarrow 7$. These results reveal the high sensitivity of the trityl systems towards redox reactions.

The kinetically controlled Siegrist reaction is an extremely stereoselective *trans* olefination.^[13] The Wittig–Horner olefination can lead to a small number of *cis* configurations in the stilbenoid series. Their proportion here was below the detection limit in the ¹H and ¹³C NMR spectra (ca. 3%).

Formation of Methylium Salts

Treatment of 2a-c and the selected model compound 2e with CF₃COOH/D led to the formation of dark-blue methylium ions. Figure 2 shows the change in the 1H and ^{13}C NMR spectroscopic data for the process $2e + D^+ \rightarrow 2'e + HDO$. The largest downfield shift is observed for the central carbon atom, which has a δ value of 81.8 ppm in 2e and

191.0 ppm in **2'e**. This difference $\Delta\delta$ of about 109 ppm is typical for a partially delocalized positive charge. Further strong downfield shifts ($\Delta\delta$ = 12.0, 14.1, and 8.8 ppm) can be observed for the alternating positions α , β , and γ (Figure 2), which also bear partial positive charges. The polarization of the three arms is, for example, documented by the $\Delta\delta'(^{13}\text{C})$ value of the two olefinic carbon atoms in each arm, which rises from 2.7 ppm in **2e** to 13.6 ppm in **2'e**. The methylium ion **2'e** represents a typical star-shaped donor–acceptor system AD₃. [14]

Figure 2. ¹H and ¹³C NMR chemical shifts of **2e** (CDCl₃) and its cation **2'e** (CDCl₃/CF₃COOD, 7:3).

The molar ratio $2e/\text{CF}_3\text{COOH}$ used for the NMR measurements was approximately 1:200. The ¹³C NMR chemical shifts change slightly with a smaller excess of acid (1:100). The equilibrium $2e + \text{CF}_3\text{COOD} \rightleftharpoons 2'e + \text{H}_2\text{O}$ is not responsible for this result because we found an equivalent effect for model compound 7a, which does not contain an OH group. We assume that the acid concentration is important for solvation complexes formed between the hexyloxy groups of 2e or 7a and $CF_3\text{COOD}$.

The treatment of the carbinols $2\mathbf{a}$ – \mathbf{c} with CF₃COOD proved to be much more complex. Scheme 3 summarizes the processes. Carbinol $2\mathbf{a}$ behaves like the model compound $2\mathbf{e}$. Protonation leads directly to the methylium salt $2'\mathbf{a}$, which then can be subjected to further stepwise protonations (m=1–3) to give $2'''\mathbf{a}$. In contrast, carbinols $2\mathbf{b}$, \mathbf{c} are first protonated on the amino groups to give the N-protonated carbinols $2''\mathbf{b}$, \mathbf{c} before the N-protonated methylium ions $2'''\mathbf{b}$, \mathbf{c} are generated. Accordingly, the unprotonated methylium salts $2'\mathbf{b}$ and $2'\mathbf{c}$ are not accessible. As the following discussion reveals, these results were obtained by studying the protonation by 1 H and 13 C NMR as well as by UV/Vis/NIR spectroscopy.

Figure 3 shows that all the ¹H NMR chemical shifts of **2a** are strongly downfield shifted for **2**"'a, which exists in a high excess of acid (CDCl₃/CF₃COOD, 7:3). The greatest shift difference, $\Delta \delta = 0.93$ ppm, is observed for the aromatic protons in the position *ortho* to the dialkylamino group. The highest $\Delta \delta$ (¹H) values for **2e** \rightarrow **2**'e were observed for

Scheme 3. Protonation of the carbinols 2a-c,e,f.

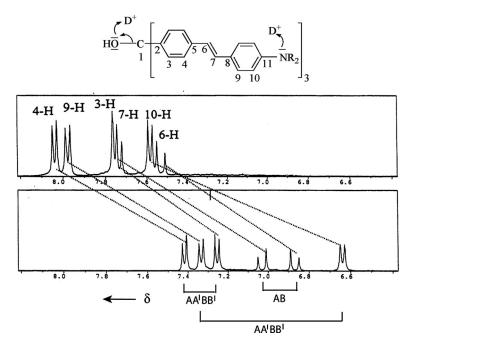


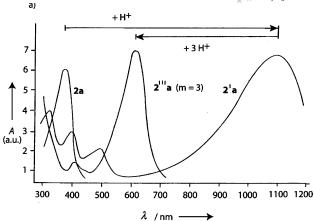
Figure 3. Low-field region of the ¹H NMR spectrum of **2a** in CDCl₃ (bottom) and of **2**′′′**a** in CDCl₃/CF₃COOD (7:3) (top). (The numbering does not correspond to the nomenclature.).

positions that are close to the central methylium carbon atom (Figure 2).

The ¹³C NMR spectrum of 2'''a indicates the formation of a delocalized methylium ion as the signal of the central carbon atom in 2a is shifted from δ = 83.5 ppm in CDCl₃ to 198.2 ppm in CDCl₃/CF₃COOD (7:3). Moreover, the excess

acid protonates/deuteriates the dialkyamino groups. The N-CH₂ groups show a signal shift from $\delta = 57.2$ to 66.2 ppm and the carbon atoms *ortho* to the dialkylamino group shift from $\delta = 113.4$ to 122.6 ppm. The sizes of the $\Delta\delta$ values indicate that the major component in the strongly acidic medium is the tetracation 2''' (m = 3). [15] An equilibrium

Eurjo European Journal of Organic Chemistry


with the trication 2'''a (m = 2) as a minor component cannot be completely excluded. The de facto C_{3h} symmetry is preserved in both cases.^[16]

N-Protonation weakens and finally cancels the push–pull character of the methylium dyes AD₃. Thus, the crucial question was: can the ratio $2\mathbf{a}$ – \mathbf{c} /CF₃COOD be so assessed that the tris(OPV)methylium dyes $2'\mathbf{a}$ – \mathbf{c} are present without *N*-protonation? An NMR study of the equilibria $2' \rightleftharpoons 2'''$ (m = 1) $\rightleftharpoons 2''''$ (m = 2) $\rightleftharpoons 2''''$ (m = 3) proved to be very difficult. Owing to the exchange processes many signals become very broad and can finally disappear in the electronic noise. [17] However, because UV/Vis/NIR absorption operates on a much faster timescale than NMR spectroscopy, absorption measurements were used to study the equilibria.

Compound **2a** in CH₂Cl₂ or CHCl₃ exhibits a long-wavelength band (Figure 4, a) with a maximum at 375 nm (ε = 84590 Lmol⁻¹ cm⁻¹). Slowly increasing the protonation (1.2×10⁻⁵ M **2a** and 1.2×10⁻⁵ to 2.2×10⁻⁴ M CF₃COOH) leads to the disappearance of this band, the formation of a few low-intensity bands in the region between 300 and 565 nm, and a strong NIR band at 1100 nm (Figure 4, a). Further increases in the CF₃COOH concentration in CH₂Cl₂ cause a steady decrease and a continuous blueshift of the maximum to 1050 nm. The solution used for the NMR measurements, which has a molar ratio for **2a**/CF₃COOD of 1:200, does not show any NIR absorption at all. Concomitant to the decrease in the NIR band, a new intense band with λ_{max} = 622 nm increases (Figure 4).

We assume that the NIR band corresponds to the equilibrium $2'a \rightleftharpoons 2'''a$ (m=1) with 2'a as the major component ($\lambda_{\max}=1100$ nm). The chromophore of 2'a contains three donor arms, which are cross-conjugated through the central acceptor to an AD₃ system. Figure 5 shows the immonium resonance structure of such an OPV arm. Only the cross-conjugated third arm has lost its donor character in 2'''a (m=1) and therefore its electron transition should be only slightly higher in energy ($\lambda_{\max}\approx1050$ nm) than that of 2'a. A high excess of CF₃COOH/D certainly leads to 2'''a (m=3) being the major component in the equilibrium 2'''a (m=2) $\rightleftharpoons 2'''a$ (m=3). Therefore we conclude that the band with $\lambda_{\max}=622$ nm corresponds to this state, which has already been described above in the analysis of the ¹H and ¹³C NMR spectroscopic data.

The carbinols $2\mathbf{b}$ ($\lambda_{\text{max}} = 411 \text{ nm}$, $\varepsilon = 155500 \text{ L} \, \text{mol cm}^{-1}$) and $2\mathbf{c}$ ($\lambda_{\text{max}} = 419 \text{ nm}$, $\varepsilon = 277200 \text{ L} \, \text{mol cm}^{-1}$) show on protonation a behavior that is quite different from that of $2\mathbf{a}$ and $2\mathbf{e}$. The long-wavelength band is first blueshifted from 411 to 360 nm and from 419 to 370 nm, respectively. Further protonation decreases the intensity of the blueshifted band and generates a new band at the Vis/NIR border at $\lambda_{\text{max}} = 732$ (n = 2) and 783 nm (n = 3). We attribute the blueshifted band to the protonated carbinols $2''\mathbf{b}$, \mathbf{c} and the finally generated band at the Vis/NIR border to the *N*-protonated methylium salts $2'''\mathbf{b}$, \mathbf{c} (Scheme 3). Compounds $2''\mathbf{b}$, \mathbf{c} (m = 1) should give, on further careful protonation, a methylium ion $2'''\mathbf{b}$, \mathbf{c} (m = 1) with $\lambda_{\text{max}} \ge 1050 \text{ nm}$. We could not find such a species. Therefore we assume that the carbinols $2\mathbf{b}$, \mathbf{c} are two- or three-fold protonated before the

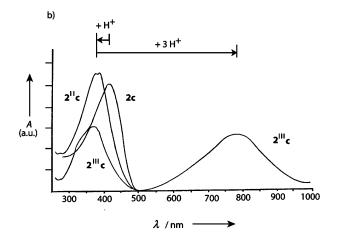


Figure 4. a) UV/Vis/NIR absorption of 2a in CHCl₃, with 2'a as the major component obtained by primary protonation and 2'''a (m = 3) obtained as the major component in the final protonation (CHCl₃/CF₃COOH). b) UV/Vis/NIR absorption of 2c in CHCl₃, N-protonated carbinol 2''c, and methylium salt 2'''c (m = 3) as the major component after the final protonation with CF₃COOH (molar ratio 2c/CF₃COOH, 1:200).

$$2^{1} \mathbf{a} \quad n = 1$$

$$2^{11} \mathbf{a} - \mathbf{c} \quad n = 1 - 3$$

$$(m = 1, 2)$$

Figure 5. Immonium resonance structure of an unprotonated arm of 2' and 2'''.

methylium ions are formed [2b,c \rightarrow 2''b,c (m = 2,3) \rightarrow 2'''b,c (m = 2,3)]. Figure 4 (b) illustrates the protonation of 2c (n = 3) and the characteristic difference in the protonation of 2a (n = 1) shown in Figure 4 (a).

The exact λ_{max} values of $2^{\prime\prime\prime}$ a-c depend to some extent on the excess of CF₃COOH. Although a 200-fold molar excess of acid should favor $2^{\prime\prime\prime}$ (m=3), $2^{\prime\prime\prime}$ (m=2) as the minor component cannot be excluded. A strict distinction between m=2 and m=3 on the basis of a small variation in λ_{max} is not possible because we also observed such an

effect for the alkoxy-substituted ions 2'e. We assume that the solvation of the ions or better of the ion pairs in CHCl₃/CF₃COOH depends on the concentration of the acid. A related solvation effect is discussed above for the NMR measurements of the electroneutral compound 7c in CDCl₃/CF₃COOD.

Figure 6 gives an overview of the absorption maxima of $2\mathbf{a}-\mathbf{c}$, $2'\mathbf{a}$, and $2'''\mathbf{a}-\mathbf{c}$ and compares them with the hexyloxy-substituted carbinols $8\mathbf{a}-\mathbf{d}$ (n=1-4) and their methylium ions $8'\mathbf{a}-\mathbf{d}$.

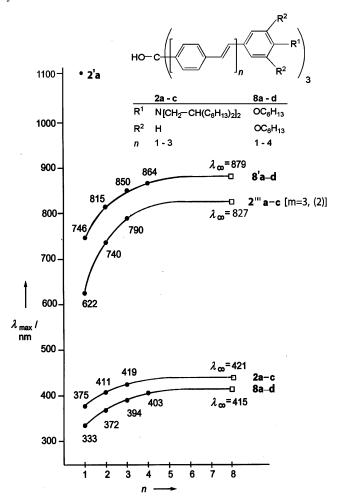


Figure 6. Absorption maxima of the carbinols **2a–c** and **8a–d** in CHCl₃, the methylium dyes **2a**′ and **8**′**a–d**, and the protonated methylium dyes **2**′′′**a–c** in CHCl₃/CF₃COOH (7:3).

The carbinol series $2\mathbf{a}-\mathbf{c}$ and $8\mathbf{a}-\mathbf{d}$ are typical bathochromic series, which means their λ_{\max} values are monotonously redshifted with increasing numbers n of repeat units and approach limiting values λ_{∞} in accord with an empirical exponential function. [14,18] Recently, semiempirical and theoretically based algorithms were suggested for such convergence problems. [19–21] Formation of the methylium salts causes a redshift that in series $8'\mathbf{a}-\mathbf{d}$ is even more pronounced than in $2'''\mathbf{a}-\mathbf{c}$ and leads to a convergence limit of λ_{∞} at 879 nm. Compared with the carbinol series $2\mathbf{a}-\mathbf{c}$ and $8\mathbf{a}-\mathbf{d}$, $2'''\mathbf{a}-\mathbf{c}$ and $8'\mathbf{a}-\mathbf{d}$ have an extended conjugation, but only compounds $8'\mathbf{a}-\mathbf{d}$ have a push–pull effect of the

type AD₃. Consequently, the λ_{\max} values of 2''' are, for each value of n, lower than the λ_{\max} values of 8'. The unprotonated series 2a–c has, in contrast, for each value of n, higher λ_{\max} values than 8a–c because dialkylamino groups are stronger donors than alkoxy groups.

In the light of these results, the tris(aminostilbenyl)methylium salts with $\lambda_{\rm max}$ values of $952^{[12]}$ and $1003~{\rm nm^{[11]}}$ published by Sengupta and Sadhukhan seem to be correct, whereas the systems reported by Steele^[9] and Screttas and Nunzi^[8] and their co-workers, which have $\lambda_{\rm max}$ values of 833 and 608 nm, respectively, are certainly polycations.

Stability

The tris(OPV)methylium dyes can be isolated in the solid state as tetrafluoroborates. The dark-blue salts are highly hygroscopic, hydrolyze rapidly (NMR control) in air or in aqueous solvents and start to fade. The carbinols 2a-f are thermally but not photochemically stable. Cross-linking by the formation of C-C single bonds is a typical photoreaction of stilbenoid compounds.^[13] In particular, energy-rich UV light, for example, $\lambda_{irr} = 254$ nm, leads to processes in which the conjugated chromophores are slowly destroyed. Stereoisomerization reactions $(E) \rightleftharpoons (Z)$ are restricted to stilbenes. Higher-conjugated stilbenoid systems do not show this type of reaction because the bond order of the olefinic double bonds is not sufficiently reduced in the excitation of the ground state So to the first excited singlet state S_1 .^[13] Therefore compound **2a** (n = 1) is by far the most photosensitive compound in the series 2a-d. The model system 2e behaves in the same way. Figure 7 demonstrates the photoreactivity of 2e for monochromatic irradiation with $\lambda_{\rm irr} = 366$ nm. The long-wavelength band ($\lambda_{\rm max} = 330$ nm in THF) is reduced and a new maximum at about 280 nm is generated. The process looks clean because an isosbestic point at $\lambda = 274$ is apparent. However, a ¹H NMR study of the probe after irradiation for 3 h revealed the presence of small amounts of cross-linked oligomers, even for irradiations at 366 nm. The major components during the entire irradiation are the original system (E,E,E)-2e and its (E,E,Z) and (E,Z,Z) isomers. For steric reasons only traces

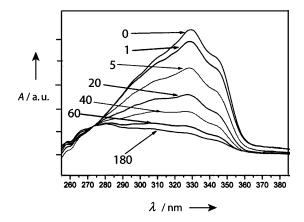


Figure 7. Reaction spectra of (E,E,E)-2e in THF after 0, 1, 5, 20, 40, 60, and 180 min of monochromatic irradiation (λ_{irr} = 366 nm).

of (Z,Z,Z)-**2e** can be formed and detected (Scheme 4). The (Z)-configured arms can be easily identified in the mixture by their olefinic AB systems in the ¹H NMR spectra, which are shifted from $\delta = 7.0$ –7.1 ($^3J = 16$ Hz) to 6.4–6.6 ppm ($^3J = 10$ Hz). The structures of the generated oligomers were not studied.

(E,E,E)-2e
$$\xrightarrow{hv}$$
 HO $\xrightarrow{OC_6H_{13}}$ \xrightarrow{M} OC₆H₁₃ $\xrightarrow{3-m}$ OC₇H₁₃ $\xrightarrow{3-m}$

Scheme 4. Photoreactions of 2e.

Conclusion and Outlook

Carbinols 2a-f with three OPV arms can be prepared by the Wittig-Horner reaction and simultaneous autoxidation. Compounds 2a-d with terminal dialkylamino groups exhibit unexpected protonation behavior. The lowest member **2a** (n = 1) first forms by O-protonation and elimination of water the corresponding methylium salt 2'a before Nprotonation to 2'''a occurs. The higher members 2b,c (n =2,3) are first N-protonated to the carbinols 2"b,c before the N-protonated methylium ions 2'''b,c are generated. This distinction has a big effect on the long-wavelength electron transition. The methylium ion 2'a is a push-pull system AD₃ with an absorption far into the NIR region (λ_{max} = 1100 nm),^[22] whereas the tetracations 2'''a-c have absorption maxima in the visible region ($\lambda_{\text{max}} = 622, 740,$ and 790 nm). They represent a bathochromic series $[\lambda(n+1) \ge \lambda(n)]$ for which a convergence limit at λ_{∞} = 827 nm can be predicted. The star-shaped molecules 2, 2', and 2''' promise as nanoparticles^[23,24] interesting SHG and TPA properties, although their photostability is limited when they are irradiated with UV light.

Experimental Section

General Remarks: UV/Vis: Zeiss MCS 320/340. ¹H and ¹³C NMR: Bruker AMX 400, Avance 600, CDCl₃ as solvent, unless otherwise stated; TMS as internal standard. MS (FD): Finnigan MAT 95. Melting points: Büchi apparatus and Stuart Scientific SMP/3; uncorrected. Elemental analyses: Microanalytical laboratory of the Institute of Organic Chemistry, University of Mainz.

General Procedure for Preparation of the Carbinols 2a–f: Triphosphonate $3^{[7]}$ (69.5 mg, 0.10 mmol) and aldehyde 4a–d, $^{[25]}$ 4e, $^{[26]}$ or $4f^{[27,28]}$ (0.40 mmol) dissolved in dry THF (20 mL) were dropped into a solution of KOC(CH₃)₃ (2.25 g, 20.0 mmol) in THF (40 mL). The mixture was stirred at ambient temperature for 3–4 d and then poured onto crushed ice (50 g). The extract (40 mL CH₂Cl₂) was dried (MgSO₄) and the solvents evaporated. The crude products 2a, 2b, and 2e were purified by filtration through silica gel (10 × 13 cm, toluene/CHCl₃ gradient from 100:0 to 80:20). The products 2e, 2d, and 2f were precipitated by the addition of ethanol or methanol to the extract.

all-(*E*)-Tris[4-(2-{4-[bis(2-hexyloctyl)amino]phenyl}vinyl)phenyl]methanol (2a): Yield 122 mg (68%); yellow, viscous oil. ¹H NMR (CD₂Cl₂): δ = 0.89 (m, 36 H, CH₃), 1.16–1.33 (m, 120 H, CH₂), 1.78–1.88 (m, 6 H, CH), 3.25 (d, ³*J* = 6.3 Hz, 12 H, NCH₂), 6.65/7.35 (AA'BB', 12 H, arom. H, outer benzene rings), 6.88/7.04 (AB, ³*J* = 16.2 Hz, 6 H, olefin. H), 7.27/7.43 (AA'BB', 12 H, arom. H, inner benzene rings) ppm. ¹³C NMR (CDCl₃): δ = 14.3 (CH₃), 23.1, 27.0, 30.2, 30.3, 32.2, 32.4 (CH₂, partly superimposed), 36.2 (CH), 57.2 (NCH₂), 82.2 (COH), 113.4, 125.9, 128.0, 128.7 (arom. CH), 123.4, 129.8 (olefin. CH), 125.0, 138.0, 145.9, 149.0 (arom. C_q) ppm. MS (FD): mlz (%) = 1790 (100) [M]⁺. UV (CHCl₃): λ _{max} = 375 nm, ε = 84590 L mol⁻¹ cm⁻¹. C₁₂₇H₂₀₅N₃O (1790.1): calcd. C 85.22, H 11.54, N 2.35; found C 85.20, H 11.25, N 2.33.

all-(E)-Tris(4{2-|4-(2-{4-|bis(2-hexyloctyl)amino|phenyl}vinyl)phenyllvinyl\phenyl\methanol (2b): Yield 101 mg (48%); yellow solid, m.p. 55 °C. ¹H NMR (CDCl₃): $\delta = 0.87$ (m, 36 H, CH₃), 1.17–1.34 (m, 120 H, CH₂), 1.78–1.88 (m, 6 H, CH), 3.21 (d, ${}^{3}J = 6.3$ Hz, 12 H, NCH₂), 6.63/7.36 (AA'BB', 12 H, arom. H, outer benzene rings), 6.87/7.04 (AB, ${}^{3}J$ = 16.2 Hz, 6 H, olefin. H, outer double bonds), 7.09 ("s", 6 H, olefin. H, inner double bonds), 7.30/7.47 (AA'BB', 12 H, arom. H, inner benzene rings), 7.43-7.47 (m, 12 H, arom. H, middle benzene rings) ppm. ¹³C NMR (CDCl₃): δ = 14.0 (CH₃), 22.6, 26.4, 29.7, 31.7, 31.8 (CH₂, partly superimposed), 35.5 (CH), 57.2 (NCH₂), 81.7 (COH), 113.5, 126.0, 126.2, 126.8, 127.3, 128.2 (arom. CH), 123.6, 127.3, 128.9, 128.9 (olefin. CH), 125.9, 135.6, 136.6, 137.9, 145.9, 145.9 (arom. C_q) ppm. MS (FD): m/z (%) = 2096 (100) [M]⁺⁺. UV/Vis (CHCl₃): $λ_{max}$ = 411 nm, ε = 155500 $L \, mol^{-1} \, cm^{-1}$. $C_{151} H_{223} N_3 O$ (2096.5): calcd. C 86.51, H 10.72, N 2.00; found C 86.49, H 10.70, N 1.89.

all-(E)-Tris{4-[2-(4-{2-[4-(2-{4-[bis(2-hexyloctyl)amino]phenyl}vinyl)phenyl|vinyl|phenyl|methanol (2c): Yield 108 mg (45%); orange solid, m.p. 175 °C. ¹H NMR (CDCl₃): $\delta = 0.87$ (m, 36 H, CH₃), 1.17–1.33 (m, 120 H, CH₂), 1.81–1.90 (m, 6 H, CH), $3.24 \text{ (d, }^3J = 6.4 \text{ Hz, } 12 \text{ H, NCH}_2), 6.65/7.37 \text{ (AA'BB', } 12 \text{ H, arom.}$ H, outer benzene rings), 6.87/7.07 (AB, ${}^{3}J = 16.3$ Hz, 6 H, olefin. H, outer double bonds), 7.13-7.19 (m, 9 H, olefin. H), 7.29-7.57 (m, 39 H, arom. and olefin. H) ppm. 13 C NMR (CD₃SOCD₃): δ = 14.3 (CH₃), 23.1, 26.8, 30.1, 31.9, 32.2 (CH₂, partly superimposed) 35.9 (CH), 57.0 (NCH₂), 81.9 (COH), 113.0, 126.5, 126.5, 127.1, 127.2, 127.2, 127.9, 128.6 (arom. CH), 123.1, 127.6, 128.1, 128.7, 128.9, 129.4 (olefin. CH), 124.5, 135.9, 136.8, 136.8, 137.4, 138.3, 146.5, 148.6 (arom. C_q) ppm. MS (FD): m/z (%) = 2403 (3) [M]⁺⁻, 794 (19), 793 (49), 792 (100). UV/Vis (CHCl₃): $\lambda_{\text{max}} = 419 \text{ nm}, \ \varepsilon = 100 \text{ nm}$ $277200\ L\,mol^{-1}\,cm^{-1}.\ C_{175}H_{241}N_3O$ (2402.9): calcd. C 87.48, H 10.11, N 1.75; found C 87.34, H 10.14, N 1.72.

all-(*E*)-Tris[4-(2-{4-[2-(4-{2-[4-(2-{4-[bis(2-hexyloctyl)amino]phenyl}vinyl)phenyl]vinyl]phenyl]vinyl]phenyl]vinyl]phenyl]vinyl]phenyl]vinyl]phenyl]winyl]phenyl]winyl]phenyl]vinyl]phenyl]winyl]phenyl]winyl]phenyl]winyl]phenyl]winyl]phenyl]winyl]phenyl]winyl]phenyl]winyl]phenyl]winyl]phenyl]winyl]phenyl]winyl]phenyl]winyl]phenyl]winyl

(AB, 3J = 16.4 Hz, 6 H, olefin. H, outer double bonds), 7.06/7.09 (AB, 3J = 16.4 Hz, 6 H, olefin. H), 7.05–7.12 (m, 6 H, olefin. H), 7.20–7.47 (m, 54 H, arom. and olefin. H) ppm. 13 C NMR ([D₈]-THF): δ = 14.4 (CH₃), 23.5, 27.3, 30.7, 32.4, 32.7 (CH₂, partly superimposed), 36.5 (CH), 57.4 (NCH₂), 81.5 (COH), 113.7, 123.9, 125.9, 126.5, 126.8, 127.4, 128.1, 128.3, 128.7, 128.9, 129.1, 129.2, 129.7 (olefin. and arom. CH, partly superimposed), 125.9, 136.6, 137.0, 137.6, 137.7, 137.8, 138.0, 138.8, 148.3, 148.9 (arom. C_q) ppm. MS (FD): m/z (%) = 2709 (3) [M]⁺⁺, 1815 (6), 998 (26), 895 (100). Owing to the low yield, further characterizations and studies of the compound have been omitted.

all-(*E*)-Tris(4-{2-[4-(hexyloxy)phenyl]vinyl}phenyl)methanol (2e): Yield 61 mg (70%); almost colorless solid, m.p. 115 °C. ¹H NMR (CDCl₃): δ = 0.91 (t, 6 H, CH₃), 1.30–1.40 (m, 12 H, CH₂), 1.41–1.53 (m, 6 H, CH₂), 1.75–1.85 (m, 6 H, CH₂), 3.95 (t, ${}^{3}J$ = 6.6 Hz, 6 H, OCH₂), 6.84/7.39 (AA′BB′, 12 H, arom. H, outer benzene rings), 6.92/7.02 (AB, ${}^{3}J$ = 16.4 Hz, 6 H, olefin. H), 7.18/7.31 (AA′BB′, 12 H, arom. H, inner benzene rings) ppm. 13 C NMR (CDCl₃): δ = 14.0 (CH₃), 22.6, 25.7, 29.3, 31.6 (CH₂), 68.2 (OCH₂), 81.8 (COH), 114.8, 125.9, 127.8, 128.3 (arom. CH), 126.0, 128.7 (olefin. CH), 130.0, 136.8, 145.7, 159.0 (arom. C_q) ppm. MS (FD): m/z (%) = 866 (100) [M]⁺⁻. C₆₁H₇₀O₄ (867.2): calcd. C 84.48, H 8.14; found C 84.39, H 8.11.

all-(*E*)-Tris(4-{2-[3,4-bis(hexyloxy)phenyl]vinyl}phenyl)methanol (2f): Yield 76 mg (65%); almost colorless solid, m.p. 109 °C. ¹H NMR (CDCl₃): δ = 0.89 (m, 18 H, CH₃), 1.31–1.36 (m, 24 H, CH₂), 1.44–1.48 (m, 12 H, CH₂), 1.77–1.86 (m, 12 H, CH₂), 3.99 (t, 6 H, OCH₂), 4.03 (t, 6 H, OCH₂), 6.84/7.00/7.05 (ABC, 9 H, arom. H, outer benzene rings), 6.93/7.02 (AB, ³*J* = 16.1 Hz, 6 H, olefin. H), 7.27/7.42 (AA′BB′, 10 H, arom. H, inner benzene rings) ppm. ¹³C NMR (CDCl₃): δ = 14.0 (CH₃), 22.6, 22.6, 31.6, 31.6, 25.7, 25.8, 29.3, 29.4 (CH₂), 69.5, 69.6 (OCH₂), 81.8 (COH), 112.0, 114.1, 120.1 (arom. CH, outer benzene rings), 125.9, 128.2 (arom. CH, inner benzene rings), 126.2, 129.0 (olefin. CH), 130.6, 136.8, 145.8, 149.4, 149.5 (arom. C_q) ppm. MS (FD): m/z (%) = 1167 (100) [M]⁺· C₇₉H₁₀₆O₇ (1167.7): calcd. C 81.26, H 9.15; found C 81.08, H 9.07.

all-(E)-Tris(4-{2-[4-(hexyloxy)phenyl]vinyl}phenyl)methane (7a): Ethyl tris(p-tolyl)methyl ether $(5)^{[6,29]}$ and Schiff base $6a^{[28]}$ were prepared according to the literature. A mixture of KOC(CH₃)₃ (3.37 g, 30.0 mmol) and 6a (5.63 g, 20.0 mmol) in dry DMF (100 mL) was degassed and purged with Ar before 5 (1.0 g, 3.0 mmol) in DMF (30 mL) was slowly added. After 1 h vigorous stirring at 80 °C, the mixture was poured onto crushed ice (300 g) and treated with 6 m HCl (100 mL, 600 mmol) for about 1 h. Extraction with CHCl₃ (3×50 mL) gave an organic phase that was washed with water (2 × 50 mL), dried (Na₂SO₄), and the solvents evaporated. The residue was recrystallized from ethanol. Yield 1.66 g (65%); colorless crystals, m.p. 121-122 °C. ¹H NMR (CDCl₃): δ = 0.89 (t, 9 H, CH₃), 1.31–1.34 (m, 12 H, CH₂), 1.42– 1.46 (m, 6 H, CH₂), 1.73–1.78 (m, 6 H, CH₂), 3.95 (t, 6 H, OCH₂), 5.51 (s, 1 H, CH), 6.86/7.40 (AA'BB', 12 H, arom. H, outer benzene rings), 6.89/7.02 (AB, $^{3}J = 16.0$ Hz, 6 H, olefin. H), 7.09/7.40(AA'BB', 12 H, arom. H, inner benzene rings) ppm. ¹³C NMR $(CDCl_3)$: $\delta = 14.0 (CH_3)$, 22.6, 25.7, 29.3, 31.6 (CH_2) , 56.2 (CH), 68.2 (OCH₂), 114.8, 126.3, 127.7, 129.8 (arom. CH), 126.2, 128.2 (olefin. CH), 130.1, 136.0, 143.0, 159.0 (arom. C_q) ppm. MS (FD): m/z (%) = 851 (100) [M + H]⁺. C₆₁H₇₀O₃ (851.2): calcd. C 86.07, H 8.29; found C 85.99, H 8.35.

all-(E)-Tris(4-{2-|4-(dodecyloxy)phenyl|vinyl}phenyl)methane (7b): The procedure applied for 7a was also used for the preparation of 7b. Ether $5^{[6]}(1.0 \text{ g}, 3.0 \text{ mmol})$ and Schiff base $6b^{[26]}(7.31 \text{ g},$

20 mmol) gave 2.15 g (65%) of **7b**. The colorless crystals melted after recrystallization from ethanol at 132 °C. ¹H NMR (CDCl₃): $\delta = 0.87$ (t, 9 H, CH₃), 1.23–1.36 (m, 48 H, CH₂), 1.42–1.47 (m, 6 H, CH₂), 1.73–1.79 (m, 6 H, CH₂), 3.95 (t, 6 H, OCH₂), 5.51 (s, 1 H, CH), 6.86/7.39 (AA′BB′, 12 H, arom. H, outer benzene rings), 6.93/7.02 (AB, $^3J = 16.3$ Hz, 6 H, olefin. H), 7.10/7.39 (AA′BB′, 12 H, arom. H, inner benzene rings) ppm. 13 C NMR (CDCl₃): $\delta = 14.1$ (CH₃), 22.7, 25.9, 29.2, 29.3, 29.5, 29.6, 31.9 (CH₂, partly superimposed), 56.2 (CH), 68.2 (OCH₂), 114.8, 126.0, 126.3, 127.7, 128.2, 129.7 (arom. and olefin. CH), 130.1, 136.0, 142.9, 159.0 (arom. C_q) ppm. MS (FD): m/z (%) = 1104 (100) [M + H]⁺. C₇₉H₁₀₆O₃ (1103.7): calcd. C 85.97, H 9.68; found C 85.92, H 9.35.

Generation of the Methylium Trifluoroacetates 2'a, 2'e, and 2'''a-c: Carbinol 2a (36 mg, 0.02 mmol) was dissolved in CH₂Cl₂ or CHCl₃ (1–2 mL) and treated with trifluoroacetic acid (10–40 mg, 0.1–0.4 mmol). The spontaneous formation of 2'a as the major component in the equilibrium $2a \rightleftharpoons 2'a \rightleftharpoons 2'''a$ (m = 1) was evident by the color change from light-yellow to blue. The polycations 2'''a-c (m = 3) $\rightleftharpoons 2'''a$ -c (m = 2) were obtained when 2a-c (0.02 mmol) were dissolved in 7:3 mixtures of CHCl₃/CF₃COOH or CH₂Cl₂/CF₃COOH (1 mL). The molar ratio 2a-c/CF₃COOH amounts in these cases to 1:200. The latter procedure was also performed for the generation of 2'e.

all-(E)-Tris[4-(2-{4-[bis(2-hexyloctyl)ammonium]phenyl}vinyl)-phenyl|methylium Tetra(trifluoroacetate) (2'''a): 1 H NMR (CDCl₃/CF₃COOD, 7:3): 5 = 0.86–0.95 (m, 36 H, CH₃), 1.20–1.47 (m, 120 H, CH₂), 1.55–1.64 (m, 6 H, CH), 3.60–3.68 (m, 12 H, NCH₂), 7.53/7.75 (AB, 3 *J* = 16.5 Hz, 6 H, olefin. H), 7.58/7.98 (AA'BB', 12 H, arom. H, outer benzene rings), 7.76/8.04 (AA'BB', 12 H, arom. H, inner benzene rings) ppm. 13 C NMR (CDCl₃/CF₃COOD 7:3): 5 = 13.7 (CH₃), 22.8, 26.2, 29.5, 31.4, 31.9 (CH₂, partly superimposed), 34.7 (CH), 66.2 (NCH₂), 122.6, 129.0, 130.7, 142.0 (arom. CH), 130.6, 135.8 (olefin. CH), 137.9, 139.9, 140.0, 150.6 (arom. C_q), 198.2 (central C) ppm. Vis/NIR: λ _{max} = 622 nm (CHCl₃/CF₃COOH = 7:3).

all-(*E*)-Tris(4-{2-|4-(2-{4-|bis(2-hexyloctyl)ammonium]phenyl}vinyl)-phenyl|vinyl}phenyl)methylium Tetra(trifluoroacetate) (2'''b): 1 H NMR (CDCl₃/CF₃COOD, 7:3): δ = 0.86–0.94 (m, 36 H, CH₃), 1.22–1.50 (m, 120 H, CH₂), 1.58–1.66 (m, 6 H, CH), 3.58–3.70 (m, 12 H, NCH₂), 7.36/7.44 (AB, 3 *J* = 16.5 Hz, 6 H, olefin. H), 7.40–7.54 (m, 9 H, arom. and olefin. H), 7.72–7.85 (m, 21 H, arom. and olefin. H), 7.89–7.94 (m, 6 H, arom. H), 8.01–8.06 (m, 6 H, arom. H) ppm. 13 C NMR (CDCl₃/CF₃COOD, 7:3): δ = 13.8 (CH₃), 23.0, 26.5, 29.7, 31.9, 32.1 (CH₂), 34.8 (CH), 66.4 (NCH₂), 122.2, 127.6, 128.3, 128.7, 129.3, 129.8, 129.9, 132.8, 136.0, 139.1, 139.5, 141.6, 142.0 (arom. and olefin. CH and C_q, partly superimposed), 198.0 (central C) ppm. Vis/NIR: λ max = 740 nm (CHCl₃/CF₃COOH = 7:3).

all-(E)-Tris{4-[2-(4-{2-[4-(2-{4-[bis(2-hexyloctyl)ammonium]phenyl}vinyl)phenyl]vinyl}phenyl)vinyl]phenyl}methylium Tetra(trifluoroacetate) (2'''c): Vis/NIR: $\lambda_{max} = 790$ nm (CHCl₃/CF₃COOH = 7:3). The ¹H and ¹³C NMR spectra exhibit broad overlapping signals.

all-(*E*)-Tris(4-{2-[4-(hexyloxy)phenyl]vinyl}phenyl)methylium Trifluoroacetate (2'e): 1 H NMR (CDCl₃/CF₃COOD, 7:3): δ = 0.88–0.94 (m, 9 H, CH₃), 1.33–1.40 (m, 12 H, CH₂), 1.44–1.53 (m, 6 H, CH₂), 1.81–1.90 (m, 6 H, CH₂), 4.14–4.21 (m, 6 H, OCH₂), 7.06/7.66 (AA'BB', 12 H, arom. H, outer benzene rings), 7.25/7.66 (AB, 3 *J* = 16.1 Hz, 6 H, olefin. H), 7.66/7.89 (AA'BB', 12 H, inner benzene rings) ppm. 13 C NMR (CDCl₃/CF₃COOD, 7:3): δ = 13.1 (CH₃), 22.2, 25.2, 28.7, 31.3 (CH₂), 69.7 (OCH₂), 116.0, 127.6,

Eurjo C

129.8, 140.3 (arom. CH), 124.5, 138.1 (olefin. CH), 138.8, 150.9, 160.4, 191.0 (arom. C₀) ppm.

Isolation of the Dyes in the Solid State: The carbinols 2a-c,e (0.02 mmol) were dissolved in CH_2Cl_2 (10 mL) and treated with HBF_4 (2 mL) and acetic anhydride (2 mL). The salts 2'e and 2'''a-c precipitated as dark-blue solids and were purified by evaporation of the volatile parts at 10^2 Pa. They are highly hygroscopic, attract water, become sticky and start to fade.

Irradiation of Carbinol 2e: A solution of (E,E,E)-**2e** (9 mg, 0.01 mmol) was irradiated in THF/[D₈]THF (1 mL). (A saturated solution of **2e** in CH₂Cl₂/CD₂Cl₂ can be used as well.) An Osram XBO-1000 W OFR lamp in an AMKO device was used. The monochromator was adjusted to 366 nm, which is on the long-wavelength end of the absorption. Thus, photocrosslinking could be kept to a minimum. The isomerization process (Scheme 4) was followed by UV and ¹H NMR measurements. Compound **2a** was treated in a similar way.

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft (DFG), the Fonds der Chemischen Industrie and the Centre of Materials Science of the University of Mainz.

- [1] A. Noack, A. Schröder, H. Hartmann, *Dyes Pigm.* **2003**, *57*, 131–147, and references cited therein.
- [2] V. Nair, S. C. Mathew, K. G. Abhilash, *Tetrahedron* 2006, 62, 6731–6747, and references cited therein.
- [3] X. Vidal, J. R. Herance, J. Marquet, J. L. Bourdelande, J. Martorell, *Appl. Phys. Lett.* 2007, 91, 081116/–081116/3.
- [4] Y. A. Mikheev, L. N. Guseva, Y. A. Ershov, Russ. J. Phys. Chem. A 2008, 82, 1580–1588.
- [5] N. I. Myakima, I. L. Kothyarevskii, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1973, 22, 1368–1370.
- [6] D. Hellwinkel, H. Fritsch, Chem. Ber. 1989, 122, 2351–2360.
- [7] H. Meier, S. Kim, Eur. J. Org. Chem. 2001, 1163–1167.
- [8] C. Arbez-Gindre, C. G. Screttas, C. Fiorini, C. Schmidt, J.-M. Nunzi, *Tetrahedron Lett.* **1999**, *40*, 7413–7416.
- [9] C. Villalonga-Barber, B. R. Steele, V. Kovac, M. Micha-Screttas, C. G. Screttas, J. Organomet. Chem. 2006, 691, 2785–2792
- [10] S. Sengupta, S. K. Sadhukhan, Ind. J. Chem., Sect. B 2003, 42, 858–862.
- [11] S. Sengupta, S. K. Sadhukhan, J. Chem. Soc. Perkin Trans. 1 2000, 24, 4332–4334.

- [12] S. Sengupta, Tetrahedron Lett. 2003, 44, 307–310.
- [13] H. Meier, Angew. Chem. 1992, 104, 1425–1446; Angew. Chem. Int. Ed. Engl. 1992, 31, 1399–1420.
- [14] H. Meier, Angew. Chem. 2005, 117, 2536–2561; Angew. Chem. Int. Ed. 2005, 44, 2482–2506.
- [15] The protonation/deuteriation of N,N-diethylaniline in CDCl₃/CF₃COOD (7:3) serves here as an equivalent model. The $\Delta\delta$ values found for the CH₂ groups and the *ortho* carbon atoms for $2\mathbf{a} \rightarrow 2'''\mathbf{a}$ amount to about 90% of the $\Delta\delta$ values obtained for diethyl(phenyl)ammonium trifluoroacetate. This value is a clear indication that the tetracation $2'''\mathbf{a}$ (m = 3) is a major component.
- [16] Owing to the fast intra- and intermolecular proton exchange, mediated by the trifluoroacetate anions, the trications 2'''a (m = 2) also have C_{3h} symmetry.
- [17] Another drawback is the H/D exchange at the position *ortho* to the dialkylamino group.
- [18] H. Meier, U. Stalmach, H. Kolshorn, Acta Polym. 1997, 48, 379–384.
- [19] J. Gierschner, J. Cornil, H.-J. Egelhaaf, Adv. Mater. 2007, 19, 173–191.
- [20] M. Bednarz, P. Reineker, E. Mena-Osteritz, P. Bäuerle, *Chem. Phys.* 2007, 342, 191–200.
- [21] A. C. Benniston, A. Harriman, D. B. Rewinska, S. Yong, Y.-G. Zhi, Chem. Eur. J. 2007, 13, 10194–10203.
- [22] The extended conjugation of the AD₃ system causes such an enormous bathochromic shift in comparison with tris(4-dimethylaminophenyl)methylium ions (Crystal Violet: $\lambda_{max} = 590 \text{ nm}$).
- [23] Model considerations predict for **2c**, with stretched saturated chains, an extension of 7 nm. The real diameter in solution should be somewhat smaller, as neutron-scattering experiments of related dendritic discs have revealed.^[24].
- [24] S. Rosenfeldt, E. Karpuk, M. Lehmann, H. Meier, P. Lindner, L. Harnau, M. Ballauff, *ChemPhysChem* 2006, 7, 2097–2104.
- [25] H. Meier, J. Gerold, H. Kolshorn, B. Mühling, Chem. Eur. J. 2004, 10, 360–370.
- [26] G. Zerban, H. Meier, Z. Naturforsch., Teil B 1993, 48, 171– 184
- [27] F. Kosteyn, G. Zerban, H. Meier, Chem. Ber. 1992, 125, 893– 897
- [28] T. Lifka, G. Zerban, P. Seus, A. Oehlhof, H. Meier, *Tetrahedron* 2008, 64, 6551–6560.
- [29] NMR spectroscopic data for **5**. ¹H NMR (CDCl₃): δ = 1.26 (t, 3 H, CH₃), 2.35 (s, 9 H, CH₃), 3.14 (q, 2 H, OCH₃), 7.13/7.37 (AA'BB', 12 H, arom. H) ppm. ¹³C NMR (CDCl₃): δ = 15.4 (CH₃ of OC₂H₅), 21.1 (CH₃), 59.3 (OCH₂), 86.1 (CO), 128.5, 128.5 (arom. CH), 136.3, 142.0 (arom. C_q) ppm.

Received: November 25, 2008 Published Online: February 26, 2009